Bauhaus-Universität Weimar

Earthquake Damage Analysis Center

Basics for reliable damage prognosis – requirements and solutions

for Antakya

Lars Abrahamczyk

Bauhaus-Universität Weimar, Earthquake Damage Analysis Center

** Closing Workshop September 30 – October 2, 2010 **

* Antakya, Hatay (Turkey) *

What does "*Reliable*" damage prognosis mean?

seriously, certain, established, successful and proven

Derivation of main criteria:

- Use of well known and accepted methods, which are state of the art or transparent "reliable" new developed methods!
- Use of all available information from the investigation object and damaging events (impact)!
- Consideration of more or less all influencing factors!

Introduction

Data Layer Knowledge level Single object Study area **Investigation object** - e.g. age, type of construction, ERD, ... **Influencing factors** - Code generation - Building particularity Impact - e.g. expected PGA

→ What does it means practically for Antakya?

3

Study Area - Antakya

- ~ 145.000 inhabitants
- ~ 27.800 buildings

→ Is a "reliable" damage prognosis feasible?

State 2006

Study Area - Antakya

Outcome of EDAC building survey in frame of SERAMAR 2005 - 2007

Abrahamczyk, L., Schwarz, J., Lang, D.H., Leipold, M., Golbs, Ch., Genes, M.C., Bikçe, M., Kaçin, S. and Gülkan, P. (2008): *"Building monitoring for seismic risk assessment (I): Instrumentation of RC frame structures as a part of the SERAMAR project."* In Proceedings 14th World Conference on Earthquake Engineering, 12-17 October 2008, Abstract ID: 09-01-0140, Beijing, China.

Study Area - Antakya

Story Classes SCi

Procedure for damage prognosis

building stock

building typology

Earthquake Scenario

allocation of reliable damage Necessary for: Loss [\$] Loss [human]

Determination of reliable damage

Step 1: selecting of representative buildings for analytical investigations

Determination of reliable damage

Step 2: collection of instrumental data for model calibration – Why?

Determination of reliable damage

Step 2: collection of instrumental data for model calibration – **How?**

Schwarz, J., Lang, D.H., Abrahamczyk, L., Bolleter, W., Savary, C., Bikce, M., Genes, M.C., Kacin, S. (2006): Seismic Building Monitoring of Multistory RC Structures in Turkey – A Contribution to the SERAMAR Project. 1st European Conference on Earthquake Engineering and Seismology (ECEES). Geneva, Switzerland, 3-8 September 2006, Stand-alone abstract and poster presentation.

Determination of reliable damage

Step 2: collection of instrumental data for model calibration – **How?**

Determination of reliable damage

Step 3: Analytical model

Abstract of structural model for analytical investigation → creation of 3D models e.g. by ETABS

Determination of reliable damage

Step 4: Model Calibration (linear)

- Comparison between measurement and calculation
- Variation of material properties and model assumptions

Determination of reliable damage

Step 5: Damage Prognosis

14

Determination of reliable damage

Step 5: Damage Prognosis

Determination of reliable damage

Step 6: Validation (non-linear)

Observed damage:

at ground floor level

in connection point at ground floor level

at performance point calculated

with ETABS.

Damage functions

Probability of damage for building types

- E.g. RC frame with masonry infill walls
- More than 7 stories
- ~1980
- rock

Allocation/ transfer to local building stock

Needs from each building for a "reliable" damage prognosis:

- age of the buildings level of earthquake resisting design
 Interaction with local authorities
- Code generation (impact, design and material)

→ local partner

Allocation/ transfer to local building stock

Level of completeness/ accuracy

 Investigation of representative buildings from each building type and code generation

Experience

- Use of available damage functions
 - from other countries or other regions (literature)

Damage scenario

- PGA 0.4g (design spectra acc. to Turkish Code)
- RC structures

Requirements and solutions for Antakya

Task	Solution	Current state
Completion of building typology	Extension to other building types (e.g. masonry)	RC – structures
Investigation of representatives	WM-Measurements	~ 20 records
Building behavior	SM-Instrumentation	4 Buildings (in operation)
Local subsoil conditions, regional GMPM	Long-term EQ recording	In process Instruments are installed
Preparedness Studies (Social aspects)	Completion of interviews in all mahalle	few interviews

Thank you for your attention!

Çok teşekkür ederim